Facile RAFT precipitation polymerization for the microwave-assisted synthesis of well-defined, double hydrophilic block copolymers and nanostructured hydrogels.

نویسندگان

  • Zesheng An
  • Qihui Shi
  • Wei Tang
  • Chia-Kuang Tsung
  • Craig J Hawker
  • Galen D Stucky
چکیده

Water-soluble macromolecular chain transfer agents (Macro-CTAs) were developed for the microwave-assisted precipitation polymerization of N-isopropylacrylamide. Two types of Macro-CTAs, amphiphilic (Macro-CTA1) and hydrophilic (Macro-CTA2), were investigated regarding their activity for the facile formation of nanoparticles and double hydrophilic block copolymers by RAFT processes. While both Macro-CTAs functioned as steric stabilization agents, the variation in their surface activity afforded different levels of control over the resulting nanoparticles in the presence of cross-linkers. The cross-linked nanoparticles produced using the amphiphilic Macro-CTA1 were less uniform than those produced using the fully hydrophilic Macro-CTA2. The nanoparticles spontaneously formed core-shell structures with surface functionalities derived from those of the Macro-CTAs. In the absence of cross-linkers, both types of Macro-CTAs showed excellent control over the RAFT precipitation polymerization process with well-defined, double hydrophilic block copolymers being obtained. The power of combining microwave irradiation with RAFT procedures was evident in the high efficiency and high solids content of the polymerization systems. In addition, the "living" nature of the nanoparticles allowed for further copolymerization leading to multiresponsive nanostructured hydrogels containing surface functional groups, which were used for surface bioconjugation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Well-defined PE-b-PTFE diblock copolymers via combination of coordination chain transfer polymerization and condensation reaction: Facile preparation and surface modification of polyethylene film

In this paper, a series of well-defined polyethylene-b-polytetrafluoroethylene diblock copolymers (PE–b– PTFEs) were prepared by a coupling reaction of hydroxyl-terminated polyethylene (PE–OH) and isocyanateterminated 1H,1H-perfluoro-1-tetradecanol (PFDO–NCO). PE–OH was prepared by the coordination chain transfer polymerization using 2,6-bis[1-(2,6-diisopropylphenyl)imino ethyl] pyridine iron (...

متن کامل

Block copolymers containing organic semiconductor segments by RAFT polymerization.

Approaches to the synthesis of block copolymers containing organic semiconductor segments (polythiophene, perylene diimide) by RAFT polymerization have been explored. A method involving transformation of a vinyl derivative to a macro-RAFT agent provides for the synthesis of block copolymers which are joined by a short non-hydrolysable linkage.

متن کامل

Control of Barite Morphology by Double-Hydrophilic Block Copolymers

Barite particles with a rich variety of well-defined morphologies have been synthesized by using double-hydrophilic block copolymers (which consist of a hydrophilic solvating block and a hydrophilic binding block) as crystal growth modifiers to direct the controlled precipitation of barium sulfate from aqueous solution. The influences of variation in functional group and molecular structure of ...

متن کامل

Non-ionic amphiphilic block copolymers by RAFT-polymerization and their self-organization

Water-soluble, amphiphilic diblock copolymers were synthesized by reversible addition fragmentation chain transfer polymerization. They consist of poly(butyl acrylate) as hydrophobic block with a low glass transition temperature and three different nonionic water-soluble blocks, namely, the classical hydrophilic block poly(dimethylacrylamide), the strongly hydrophilic poly(acryloyloxyethyl meth...

متن کامل

Microwave-Assisted Solution Combustion Synthesis of WO3 Nanoparticles: Optical and Colorimetric Characteristics

Tungsten oxide (WO3) and tungsten oxide hydrate (WO3.H2O) nanoparticles were synthesized via microwave-assisted solution combustion in comparison with the acidic precipitation method. Oxalic acid was used as a surfactant and forming agent in the acidic precipitation method. In addition to oxalic acid, glycine and citric acid were also used as fuels in the microw...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 129 46  شماره 

صفحات  -

تاریخ انتشار 2007